Tracking and Object Classification for Automated Surveillance

نویسندگان

  • Omar Javed
  • Mubarak Shah
چکیده

In this paper we discuss the issues that need to be resolved before fully automated outdoor surveillance systems can be developed, and present solutions to some of these problems. Any outdoor surveillance system must be able to track objects moving in its field of view, classify these objects and detect some of their activities. We have developed a method to track and classify these objects in realistic scenarios. Object tracking in a single camera is performed using background subtraction, followed by region correspondence. This takes into account multiple cues including velocities, sizes and distances of bounding boxes. Objects can be classified based on the type of their motion. This property may be used to label objects as a single person, vehicle or group of persons. Our proposed method to classify objects is based upon detecting recurrent motion for each tracked object. We develop a specific feature vector called a ‘Recurrent Motion Image’ (RMI) to calculate repeated motion of objects. Different types of objects yield very different RMI’s and therefore can easily be classified into different categories on the basis of their RMI. The proposed approach is very efficient both in terms of computational and space criteria. RMI’s are further used to detect carried objects. We present results on a large number of real world sequences including the PETS 2001 sequences. Our surveillance system works in real time at approximately 15Hz for 320x240 resolution color images on a 1.7 GHz pentium-4 PC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

A Novel Method for Tracking Moving Objects using Block-Based Similarity

Extracting and tracking active objects are two major issues in surveillance and monitoring applications such as nuclear reactors, mine security, and traffic controllers. In this paper, a block-based similarity algorithm is proposed in order to detect and track objects in the successive frames. We define similarity and cost functions based on the features of the blocks, leading to less computati...

متن کامل

Combining Motion Segmentation and Feature Based Tracking for Object Classification and Anomaly Detection

We present a novel pipeline for automated visual surveillance system based on utilising conventional adaptive background modelling in-conjunction with optic flow to provide motion sensitive foreground/background segmentation. Furthermore active contours are then used to detect robust motion boundaries within the scene from which PCA is used for object classification. Feature based tracking is t...

متن کامل

Using a Novel Concept of Potential Pixel Energy for Object Tracking

Abstract   In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...

متن کامل

Efficient Vehicle Tracking and Classification for an Automated Traffic Surveillance System

As digital cameras and powerful computers have become wide spread, the number of applications using vision techniques has increased enormously. One such application that has received significant attention from the computer vision community is traffic surveillance. We propose a new traffic surveillance system that works without prior, explicit camera calibration, and has the ability to perform s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002